ตรีโกณมิติ

รูปภาพของ rebellion

รูปสามเหลี่ยมสองรูปจะเรียกว่าคล้ายกัน ถ้ารูปหนึ่งสามารถขยายได้เป็นอีกรูปหนึ่ง และจะเป็นกรณีนี้ก็ต่อเมื่อมุมที่สมนัยกันมีขนาดเท่ากัน ตัวอย่างเช่น รูปสามเหลี่ยมสองรูปที่มีมุมร่วมกันมุมหนึ่ง และด้านที่ตรงข้ามกับมุมนั้นขนานกัน เป็นข้อเท็จจริงว่ารูปสามเหลี่ยมที่คล้ายกัน ด้านแต่ละด้านจะเป็นสัดส่วนกัน นั่นคือ ถ้าด้านที่ยาวที่สุดของรูปสามเหลี่ยมหนึ่ง ยาวเป็นสองเท่าของด้านที่ยาวที่สุดของรูปสามเหลี่ยมที่คล้ายกัน จะกล่าวได้ว่า ด้านที่สั้นที่สุดจะยาวเป็นสองเท่าของด้านที่สั้นที่สุดของอีกรูปสามเหลี่ยม และด้านที่ยาวปานกลางก็จะเป็นสองเท่าของอีกรูปสามเหลี่ยมเช่นกัน อัตราส่วนระหว่างด้านที่ยาวที่สุดและด้านที่สั้นที่สุดของรูปสามเหลี่ยมแรก จะเท่ากับ อัตราส่วนระหว่างด้านที่ยาวที่สุดและด้านที่สั้นที่สุดของรูปสามเหลี่ยมอีกรูปด้วย

รูปสามเหลี่ยมมุมฉาก

จากข้อเท็จจริงเหล่านี้ เราจะนิยามฟังก์ชันตรีโกณมิติ เริ่มต้นด้วยรูปสามเหลี่ยมมุมฉาก ซึ่งเป็นรูปสามเหลี่ยมซึ่งมีมุมฉากหนึ่งมุม (90 องศา หรือ π/2 เรเดียน) ด้านที่ยาวที่สุดในรูปสามเหลี่ยมใดๆจะอยู่ตรงข้ามกับมุมที่ใหญ่ที่สุด แต่เพราะว่าผลรวมของมุมภายในรูปสามเหลี่ยมเท่ากับ 180 องศา หรือ π เรเดียน ดังนั้นมุมที่ใหญ่ที่สุดในรูปสามเหลี่ยมนี้คือมุมฉาก ด้านที่ยาวที่สุดในรูปสามเหลี่ยมจึงเป็นด้านที่ตรงข้ามกับมุมฉาก เรียกว่า ด้านตรงข้ามมุมฉาก

นำรูปสามเหลี่ยมมุมฉากมาสองรูปที่มีมุม A ร่วมกัน รูปสามเหลี่ยมทั้งสองนี้จะคล้ายกัน และอัตราส่วนของด้านตรงข้ามมุม A ต่อด้านตรงข้ามมุมฉาก จะเท่ากันทั้งสองรูป มันจะเป็นจำนวนระหว่าง 0 ถึง 1 ขึ้นอยู่กับขนาดของมุม A เท่านั้น เราเรียกว่า ไซน์ของ A และเขียนด้วย sin (A) ในทำนองเดียวกัน เรานิยาม โคไซน์ของ A คืออัตราส่วนระหว่าง ด้านประชิดมุม A ต่อด้านตรงข้ามมุมฉาก

 \sin A = {\mbox{opp} (a) \over \mbox{hyp} (c) }<br />
\qquad \cos A = {\mbox{adj} (b) \over \mbox{hyp} (c) }<br />

ฟังก์ชันเหล่านี้เป็นฟังก์ชันตรีโกณมิติที่สำคัญ ฟังก์ชันอื่นๆสามารถนิยามโดยใช้อัตราส่วนของด้านต่างๆของรูปสามเหลี่ยม แต่มันก็สามาถเขียนได้ในรูปของ ไซน์ และ โคไซน์ ฟังก์ชันเหล่านี้คือ แทนเจนต์, ซีแคนต์, โคแทนเจนต์, และ โคซีแคนต์

 \tan A = {\sin A \over \cos A} = {\mbox{opp} (a) \over \mbox{adj} (b) }<br />
\qquad \sec A = {1 \over \cos A}      = {\mbox{hyp} (c) \over \mbox{adj} (b) }

 \cot A = {\cos A \over \sin A} = {\mbox{adj} (b) \over \mbox{opp} (a) }<br />
\qquad \csc A = {1 \over \sin A}      = {\mbox{hyp} (c) \over \mbox{opp} (a) }

วิธีจำ ไซน์ โคไซน์ แทนเจนต์ อย่างง่ายๆคือจำว่า ข้ามฉาก ชิดฉาก ข้ามชิด (ไซน์-ด้านตรงข้าม-ด้านตรงข้ามมุมฉาก โคไซน์-ด้านประชิด-ด้านตรงข้ามมุมฉาก แทนเจนต์-ด้านตรงข้าม-ด้านประชิด)

ที่ผ่านมา ฟังก์ชันตรีโกณมิติถูกนิยามขึ้นสำหรับมุมระหว่าง 0 ถึง 90 องศา (0 ถึง π/2 เรเดียน) เท่านั้น หากใช้วงกลมหนึ่งหน่วย จะขยายได้เป็นจำนวนบวกและจำนวนลบทั้งหมด (ดูใน ฟังก์ชันตรีโกณมิติ)

ครั้งหนึ่ง ฟังก์ชันไซน์และโคไซน์ถูกจัดลงในตาราง (หรือคำนวณด้วยเครื่องคิดเลข) ทำให้ตอบคำถามทั้งหมดเกี่ยวกับรูปสามเหลี่ยมใดๆได้อย่างแท้จริง โดยใช้กฎไซน์ และ กฎโคไซน์

กฎเหล่านี้สามาถใช้ในการคำนวณมุมที่เหลือและด้านของรูปสามเหลี่ยมได้ เมื่อรู้ความยาวด้านสองด้านและขนาดของมุมหนึ่งมุม หรือรู้ขนาดของมุมสองมุมและความยาวของด้านหนึ่งด้าน หรือ รู้ความยาวของด้านทั้งสามด้าน

นักคณิตศาสตร์บางคนเชื่อว่าตรีโกณมิติแต่เดิมนั้น ถูกประดิษฐ์ชึ้นเพื่อใช้คำนวณนาฬิกาแดด ซึ่งมักเป็นโจทย์ในหนังสือเก่าๆ มันมีความสำคัญมากในเรื่องการสำรวจ

สร้างโดย: 
rebellion

มหาวิทยาลัยศรีปทุม ผู้ใหญ่ใจดี
 

 ช่วยด้วยครับ
นักเรียนที่สร้างบล็อก กรุณาอย่า
คัดลอกข้อมูลจากเว็บอื่นทั้งหมด
ควรนำมาจากหลายๆ เว็บ แล้ววิเคราะห์ สังเคราะห์ และเขียนขึ้นใหม่
หากคัดลอกทั้งหมด จะถูกดำเนินคดี
ตามกฎหมายจากเจ้าของลิขสิทธิ์
มีโทษทั้งจำคุกและปรับในอัตราสูง

ช่วยกันนะครับ 
ไทยกู๊ดวิวจะได้อยู่นานๆ 
ไม่ถูกปิดเสียก่อน

ขอขอบคุณในความร่วมมือครับ

อ่านรายละเอียด

ด่วน...... ขณะนี้
พระราชบัญญัติลิขสิทธิ์ (ฉบับที่ 2) พ.ศ. 2558 
มีผลบังคับใช้แล้ว 
ขอให้นักเรียนและคุณครูที่ใช้งาน
เว็บ thaigoodview ในการส่งการบ้าน
ระมัดระวังการละเมิดลิขสิทธิ์ด้วย
อ่านรายละเอียดที่นี่ครับ

 

สมาชิกที่ออนไลน์

ขณะนี้มี สมาชิก 0 คน และ ผู้เยี่ยมชม 8 คน กำลังออนไลน์